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Insight into nucleon structure from generalized parton distributions
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The lowest three moments of generalized parton distributions are calculated in full QCD and provide new
insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse
structure of the nucleon.

1. INTRODUCTION

Matrix elements of the light cone operator

O(x)=
∫

dλ
4π
eiλxψ̄(−λn

2
)6 nPe

−ig

∫
λ/2

−λ/2
dα n·A(αn)

ψ(λn
2

)

and the tower of twist-two operators

O{µ1µ2...µn}
q = ψqγ

{µ1 i Dµ2 . . . i Dµn}ψq

provide a wealth of precise information about the
quark and gluon structure of the nucleon. The di-
agonal nucleon matrix element 〈P |O(x)|P 〉 mea-
sures the light cone momentum distribution, q(x),

and 〈P |O
{µ1µ2...µn}
q |P 〉 specifies the (n−1)th mo-

ment of this distribution,
∫
dxxn−1q(x). Off-

diagonal matrix elements of O(x) measure the
generalized parton distributions[1] H(x, ξ, t) and
E(x, ξ, t):

〈P ′|O(x)|P 〉 = 〈〈γ〉〉H(x, ξ, t) +
i∆

2m
〈〈σ〉〉E(x, ξ, t),

where ∆µ = P ′µ − Pµ, t = ∆2, ξ =
−n · ∆/2, and 〈〈Γ〉〉 = Ū(P ′)ΓU(P ). Off-
diagonal matrix elements of the twist-two op-

erators 〈P ′|O
{µ1µ2...µn}
q |P 〉 yield moments of
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these generalized parton distributions, and this
work considers the generalized form factors
An0(t) ≡

∫
dxxn−1H(x, 0, t) and Bn0(t) ≡∫

dxxn−1E(x, 0, t).
Two special cases are important for the present

work. The zeroth moments correspond to the
familiar electromagnetic form factors (weighted
with appropriate quark charges), A10(t) = F1(t)
and B10(t) = F2(t). The first moments yield the
total quark angular momentum, Jq = 1

2 [A20(0)+
B20(0)]. Combined with the angular momentum
from the quark spin, 1

2Σ = 1
2 [〈1〉∆u + 〈1〉∆d], this

enables decomposition of the quark contribution
to the nucleon spin.

Burkardt[2] has shown that the generalized
parton distribution H(x, 0,∆2) is the Fourier
transform of the impact parameter dependent
parton distribution

q(x, b⊥) =

∫
d2∆⊥

(2π)2
H(x, 0,−∆2

⊥)e−ib⊥∆⊥ ,

where q(x, b⊥) is the probability of finding a
quark with longitudinal momentum fraction x
and transverse position (or impact parameter) b⊥,
and ∆⊥ is the transverse momentum transfer.
Physically, we expect the transverse size of the
nucleon to decrease significantly as x increases.
As x → 1, a single parton carries all the mo-
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Figure 1. Electromagnetic form factor ratio
Q2F2(Q2)

log2(Q2/Λ2)F1(Q2)
.

mentum, the proton wave function is reduced to
a single Fock space component, and the trans-
verse wave function has zero spatial extent. Since
H(x, 0, t) is the Fourier transform of the trans-
verse distribution, the slope in t = ∆2

⊥ at the
origin measures the rms transverse radius. The
slope should decrease significantly with x and as
x→ 1, it should approach zero. Hence, the slope
of the generalized form factors An0(t) should de-
crease with increasing n, and we demonstrate this
effect in our lattice calculations.

2. LATTICE CALCULATION

By calculating an overdetermined set of lattice
observables to improve the statistical accuracy of
generalized form factors as described in ref. [3],
we calculate the lowest three moments

〈P ′|Oµ1 |P 〉=〈〈γµ1 〉〉A10(t)+
i
2m 〈〈σµ1α〉〉∆αB10(t),

〈P ′|O{µ1µ2}|P 〉 = P̄ {µ1〈〈γµ2}〉〉A20(t)

+ i
2m P̄

{µ1〈〈σµ2}α〉〉∆αB20(t)+
1
m∆{µ1∆µ2}C2(t),

〈P ′|O{µ1µ2µ3}|P 〉 = P̄ {µ1P̄µ2〈〈γµ3}〉〉A30(t)

+ i
2m P̄

{µ1 P̄µ2〈〈σµ3}α〉〉∆αB30(t)

+ ∆{µ1∆µ2〈〈γµ3}〉〉A32(t)

+ i
2m∆{µ1∆µ2〈〈σµ3}α〉〉∆αB32(t),

where P̄µ = (Pµ + P ′
µ)/2.

We calculated connected diagram contributions
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Figure 2. Generalized form factors Au+d

20 (t) and
Bu+d

20 (t), with dipole fits denoted by dashed
curves.

using ∼ 200 SESAM[4] full QCD configurations
with Wilson fermions at β = 5.6 on 163 × 32 lat-
tices at each of three quark masses, κ= 0.1570,
0.1565, and 0.1560, corresponding to pion masses
defined by r0 of 744, 831, and 897 MeV respec-
tively.

Figure 1 shows our result for the electromag-
netic form factor ratio F2/F1 divided by the next
to leading order light cone wave function result[5]
log2(Q2/Λ2)/Q2 with Λ = 0.3 GeV. The Q2 de-
pendence is in excellent agreement with the recent
JLab data[6] plotted in Ref. [5], but the overall ra-
tio is a factor of four too high in the heavy quark
world in which mπ ∼ 700-900 MeV.

The total quark contribution to the nucleon
spin is given by the extrapolation to t = 0 of
Au+d

20 (t) and Bu+d

20 (t) shown in Figure 2. Since
Au+d

20 (t) is calculated directly at t = 0 and Bu+d

20 (t)
is well fit by a constant that is measured to be
nearly zero with small errors, the connected con-
tribution to the angular momentum is measured
to within a few percent. Combined with the re-
sults of Σ from reference [7], we obtain the con-
nected diagram contributions to the decomposi-
tion of nucleon spin shown in Table 1. Simi-
lar results have been obtained in refs. [8,9]. To
the extent that the disconnected diagrams do not
change the qualitative behavior, we conclude that
of the order of 70% of the spin of the nucleon
arises from the quark spin and a negligible frac-
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κ 0.1570 0.1565 0.1560
∆Σ 0.67± .04 0.73 ± .03 0.68 ± .02
2Lq 0.06± .05 -0.04 ± .04 0.00 ± .03
2Jq 0.73± .04 0.69± .02 0.68 ± .03

Table 1
Fraction of nucleon spin arising from quark spin,
∆Σ, quark orbital angular momentum, 2Lq, and
quark total angular momentum, 2Jq.

tion arises from the quark orbital angular mo-
mentum in a heavy pion world where mπ ∼ 700 -
900 MeV. In the chiral limit, the quark spin con-
tribution must decrease to ∼ 30% to agree with
experiment.

Figure 3 shows the generalized form factors
Au+d

10 (t),Au+d

20 (t), and Au+d

30 (t) for κ = 0.1560 and
0.1570, corresponding to the lowest three mo-
ments of H(x, 0, t). As explained above, the de-
crease in slope with increasing moment is a clear
manifestation of the decrease of the transverse
size of the light cone wave function as x → 1.
Note that the error bands are sufficiently narrow
that the dramatic change of slope is clearly de-
termined, strongly ruling out a factorized Ansatz
for the momentum transfer dependence of gener-
alized form factors. Qualitatively similar behav-
ior is obtained for the connected contributions to
Au+d

n0 (t) and for the spin-dependent Ãu-d

n0 (t)[10].
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